Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Lifetime Assessment of Particulate Ceramic Composite with Residual Stresses
Náhlík, Luboš ; Majer, Zdeněk ; Štegnerová, Kateřina ; Hutař, Pavel
A micro-crack propagation in particulate ceramic based composite was studied using finite element method (FEM). Subcritical crack growth (SCG) was numerically simulated under complex load conditions (mechanical loading and loading by internal residual stresses). The effect of residual stresses on the crack propagation was studied. Two-dimensional computational model of particulate ceramic composite with material properties corresponding to low temperature co-fired ceramics (LTCC) was developed. The results indicate that the presence of residual stresses significantly reduces values of stress intensity factor in the vicinity of composite surface and the direction of residual stresses around the particles contributes to the micro-crack deflection from the particles. The time to failure of the composite under mechanical loading was determined. Results obtained contribute to a better understanding of the role of residual stresses during micro-crack propagation in ceramic particulate composites.
3D Model of Crack Propagation in Particulate Ceramic Composite Containing Residual Stresses
Štegnerová, Kateřina ; Majer, Zdeněk ; Hutař, Pavel ; Náhlík, Luboš
A crack propagation and fracture behaviour of particulate ceramic composite were investigated. Influence of 3D shape of particles on the crack propagation was studied together with influence of the presence of residual stresses, which are developed inside the composite during manufacturing process. Finite element (FE) method was used for numerical simulation of propagating crack in the composite. Basic numerical models of low-temperature co-fired ceramics (LTCC) with alumina particles homogenously dispersed in the glass matrix were developed. Volume fraction of alumina phase was 20vol.%, which is typical amount for LTCC. The results show that existence of residual stresses retards the crack propagating under conditions of sub-critical crack growth (SCG). Presented results contribute to a better understanding of the role of residual stresses in particulate ceramic composites.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.